Succinct Progress Measures and Solving Parity Games in Quasi-Polynomial Time

Marcin Jurdzinski

Ranko Lazic

DIMAP, Department of Computer Science, University of Warwick

- pushdown graphs - hierarchical structures

- higher-order recursion

- universal coalgebra

- stochastic systems

- timed systems - hybrid systems

- emptiness translations
- Logic satisfiability
- fixpoint logics
- model checking fair (bi) simulation
- program analysis and repair

- Fearnley, Jain, Shewe, Stephan, Writerak SPIN 2017
 An ordered approach to solving partly games
 in quasipulgnomial time and quasilinear space

WIDER IMPACT OF PARITY GAMES

PARITY GAMES

3-22

G = (V = V Even U V oud , E, TT)

 $\pi: V \rightarrow \{1, 2, 3, 4, 5, ..., d\}$

- · Structural graph theory for directed graphs
- . Time complexity of Howard's policy iteration
- · Time complexity of (randomized) simplex pivoting rules
- · Computational complexity of search problems
- · Computational complexity of path-following algorithms

COMPLEXITY OF DIVIDE-AND-CONQUER ALGORITHMS

- Plain vanilla [McN'33, Zie'98]: nd+0(1) $T(n,d) \leq n \cdot T(n,d-1) + O(nm)$
- . Dominion preprocessing by brute force [JPZ'06'08]: N $T(n) \leq T(n-1) + T(n-\sqrt{n}) + n^{O(\sqrt{n})}$
- $T(n,d) \leq \sqrt[3]{n} \cdot T(n,d-1) + n^{\frac{d}{3} + O(1)}$

AN "ADAPTIVE" ORDER ON B*

D < e < 1

For all $b \in \mathbb{B}$ and $\overline{s}, \overline{t} \in \mathbb{B}^*$:

- ₹ ≺ 1] इ
- bs < bt iff s < t

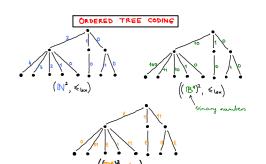
where $\overline{\epsilon} \in \mathbb{B}^*$ is the empty string

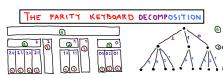
THE SUCCINCT PROGRESS MEASURE THEOREM

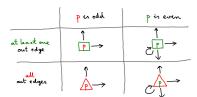
- IL TFAE
- (1) There is a (small) progress measure $\mu:V \to \mathbb{J}_{n,d/2}$
- (2) There is a succinct progress measure $\kappa: V \rightarrow \bigsqcup_{n,d/2}$

A PROGRESS MEASURE succinct U: V - Ne/2

- · Edge (v,u) is progressive if
- $\mu(v)|_{\pi(v)}$ $\otimes_{loc} \mu(u)|_{\pi(v)}$ and $\pi(v)$ is even $-\mu(v)|_{\pi(v)} \otimes_{\omega} \mu(u)|_{\pi(v)}$ and $\pi(v)$ is odd
- · Ventex or is progressive if
- ve Vern and at least one outedge is progressive - VEVous and all outedges are progressive
- I is a progress measure if all vertices are progression







THE LIFTING ALGORITHM

- 1. Let M(v) = (0,0,...,0) = J_n, d/2 for all UEV
- 2. While there is a vertex or that is not progressive do let M:= Mindifty (M)
- - (a) the progressive vertices (winning positions) (b) the progressive edges (positional winning strategy)

A PROGRESS MEASURE

- $|\mu:V\rightarrow N^{d/2}|$. Edge (v,u) is progressive if
- $-\mu(v)|_{\pi(v)} \gg_{bx} \mu(u)|_{\pi(v)}$ and $\pi(v)$ is even $-\mu(v)|_{\pi(v)}>_{6\times}\mu(u)|_{\pi(v)}$ and $\pi(v)$ is odd
- · Ventex v is progressive if - ve Veven and at least one outedge is progressive - v E Vord and all outedges are progressive
- is a progress measure if all vertices are progression

COMPLEXITY OF THE LIFTING ALGORITHM

- Time: $O\left(\sum_{v \in V} d du_{2}(v) \left| \mathcal{J}_{n,d/2} \right| \right) = O\left(dm \cdot \left| \mathcal{J}_{n,d/2} \right| \right)$
- Space: () (dn)

THE SMALL PROGRESS MEASURE THEOREM

- (1) There is a parity keyboard decomposition of V
- (2) There is a small progress measure $\mu: V \rightarrow \left\{0,1,2,\ldots,n\right\}^{d/2}$
- (6) There is a positional \square -dominion strategy on V

SUCCINT ADAPTIVE MULTI-COUNTERS

 $\mathbb{B} = \{0, 1\}$

$$\underline{\underline{\mathsf{Fad}}} \ \left| \underline{\mathsf{L}}_{m,d/2} \right| \leqslant 2^{\lceil l_3 m \rceil \cdot \left(1 + \lceil l_3 \frac{d}{2} \rceil \right)} = n^{\lfloor l_3 d + O(1) \rfloor}$$

THE LIFTING ALGORITHM

- 1. Let M(v):=(0,0, 10) €], A/2 for all v∈V
- 2. While there is a vertex or that is not progressive do let M:= Mindiffy (M)

 - (a) the progressive vertices (winning positions)
 - (b) the progressive edges (positional arining strategy)

COMPLEXITY OF THE SUCCINCT LIFTING ALGORITHM

- Time: $O\left(\sum_{v \in V} du_g(v) \cdot \left| \int_{v,d/2}^{1} \right| \right) = \widetilde{O}\left(m \cdot \left| \bigcup_{m,d/2} \right| \right)$ = n logd +0(1)
- Space: $O(2n) = \tilde{O}(n)$

d	CJKLS'17	JL'17	G 1-3'17	FJSSW 17
0(1)		0(m·n· lg 2+1n)		0(my.lgd1)
(<mark>ہ</mark> ہما)ہ		O(m. 7 110(4))		
2 [d. lan]		O(m: n		
[lgŋ]		O(m. n 2.38)	O(m: n2 55)	
ω (log <u>η</u>)	O(nlad+s)	(d.m. 1/4(1/197)+155)		
,Ω,(koa²η)			O(d.m., 4(4)+145	O(d m " b)(1/4)+1.4